Extensions 1→N→G→Q→1 with N=C62 and Q=C4

Direct product G=NxQ with N=C62 and Q=C4
dρLabelID
C2xC6xC12144C2xC6xC12144,178

Semidirect products G=N:Q with N=C62 and Q=C4
extensionφ:Q→Aut NdρLabelID
C62:1C4 = C62:C4φ: C4/C1C4 ⊆ Aut C62124+C6^2:1C4144,136
C62:2C4 = C22xC32:C4φ: C4/C1C4 ⊆ Aut C6224C6^2:2C4144,191
C62:3C4 = C32xC22:C4φ: C4/C2C2 ⊆ Aut C6272C6^2:3C4144,102
C62:4C4 = C3xC6.D4φ: C4/C2C2 ⊆ Aut C6224C6^2:4C4144,84
C62:5C4 = C62:5C4φ: C4/C2C2 ⊆ Aut C6272C6^2:5C4144,100
C62:6C4 = Dic3xC2xC6φ: C4/C2C2 ⊆ Aut C6248C6^2:6C4144,166
C62:7C4 = C22xC3:Dic3φ: C4/C2C2 ⊆ Aut C62144C6^2:7C4144,176

Non-split extensions G=N.Q with N=C62 and Q=C4
extensionφ:Q→Aut NdρLabelID
C62.1C4 = C2xC32:2C8φ: C4/C1C4 ⊆ Aut C6248C6^2.1C4144,134
C62.2C4 = C62.C4φ: C4/C1C4 ⊆ Aut C62244-C6^2.2C4144,135
C62.3C4 = C32xM4(2)φ: C4/C2C2 ⊆ Aut C6272C6^2.3C4144,105
C62.4C4 = C6xC3:C8φ: C4/C2C2 ⊆ Aut C6248C6^2.4C4144,74
C62.5C4 = C3xC4.Dic3φ: C4/C2C2 ⊆ Aut C62242C6^2.5C4144,75
C62.6C4 = C2xC32:4C8φ: C4/C2C2 ⊆ Aut C62144C6^2.6C4144,90
C62.7C4 = C12.58D6φ: C4/C2C2 ⊆ Aut C6272C6^2.7C4144,91

׿
x
:
Z
F
o
wr
Q
<